
Phenomenological Theory of the 3 Kelvin Phase in Sr2RuO4

Manfred SIGRIST* and Hartmut MONIEN**

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502

(Received February 7, 2001)

We model the 3 K-phase of Sr2RuO4 with Ru-metal inclusion as interface state with locally
enhanced transition temperatures. The resulting 3 K-phase must have a di.erent pairing
symmetry than the bulk phase of Sr2RuO4, because the symmetry at the interface is lower than in
the bulk. It is invariant under time reversal and a second transition, in general, above the onset of
bulk superconductivity is expected where time reversal symmetry is broken. The nucleation of the
3 K-phase exhibits a ‘‘capillary e.ect’’ which can lead to frustration phenomena for the
superconducting states on di.erent Ru-inclusions. Furthermore, the phase structure of the pair
wave function gives rise to zero-energy quasiparticle states which would be visible in quasiparticle
tunneling spectra. Additional characteristic properties are associated with the upper critical 6eld
Hc2. The 3 K-phase has a weaker anisotropy of Hc2 between the inplane and z-axis orientation
than the bulk superconducting phase. This is connected with the more isotropic nature Ru-metal
which yields a stronger orbital depairing e.ect for the inplane magnetic 6eld than in the strongly
layered Sr2RuO4. An anomalous temperature dependence for the z-axis critical 6eld is found due
to the coupling of the magnetic 6eld to the order parameter texture at the interface. Various other
experiments are discussed and new measurements are suggested.
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x1. Introduction

In recent years the quasi-two-dimensional metal
Sr2RuO4 has advanced to one of the most intensely
studied transition metal oxides displaying unconven-
tional superconductivity.1,2) There is strong evidence for
spin-triplet pairing with broken time reversal symmetry,
a pairing state with the basic form dðkÞ ¼ ẑzðkx � ikyÞ
(chiral p-wave state).3{5) This superconducting phase
shows a variety of unusual properties among which the
recently discovered ‘‘3-Kelvin’’ (3 K) phase is one of the
most puzzling 6ndings. While the transition to the bulk
superconducting state occurs around 1.5 K, in samples
with a large excess-Ru concentration a precursors to the
superconducting transition appears at temperatures as
high as 3 K.6,7) This phase shows the features of an
inhomogeneous superconducting phase. The detailed
material analysis revealed that the excess-Ru does not
distribute uniformly, but forms small inclusions of
micrometer-size. Thus, the 3 K-phase is likely connected
with the phase separation of Ru-metal and Sr2RuO4 in
this sample. The bulk superconductivity of metallic Ru
has a superconducting transition temperature of 0.5 K
only with a conventional (s-wave) pairing state. This
leads us to the assumption that the boundaries between
the two materials provides the environment for the local
nucleation of superconductivity at a higher temperature
(Fig. 1).

It is not our aim to discuss here in detail the origin for
the locally enhanced transition temperature, since the
microscopic mechanism of superconductivity in Sr2RuO4

is still unclear. Nevertheless, we would like to comment
on one important aspect which could be connected with
the enhanced superconductivity. Various experiments
have shown that a particular soft optical modes for local
lattice distortion is associated with the inplane rotation
of the RuO6-octahedra, the �3-mode at the Brillouin
zone boundary of the phonon spectrum, which leads to a
slight volume reduction.8) This rotation a.ects one of the
three electron bands in particular, the 	-band which
originates from the 4d{t2g-orbital with dxy-symmetry.3,9)

While the dispersion for this orbital occurs via -
hybridization between the Ru{d-orbital and the O{p-
orbitals in the undistorted case, the rotation introduces
an additional �-hybridization of opposite sign for the dxy-
orbital. A lattice distortion of this kind would diminish
the dispersion of the 	-band and enhance the electron
density of states, because of a Van Hove singularity near
the Fermi level.10) It is likely that the Ru-inclusions in
Sr2RuO4 lead to internal stress that is released by local
static distortions in the vicinity of the interfaces, most
likely connected with the �3-mode (	h!�3

� 140 K). A
crude estimate from neutron scattering data yields a
length scale of order 50{100 �A over which this rotational
distortion extend away from the interface. The increased
density of states would lead to a locally enhanced Tc
independent of the microscopic mechanism. Additionally
enhanced ferromagnetic spin >uctuations may support
the spin-triplet pairing instability too.10)

In this paper we would like to investigate a number of
properties of the inhomogeneous 3 K-phase from a
phenomenological point of view. A generalized Ginz-
burg{Landau (GL) formulation is most suitable for this
purpose, since we will discuss an inhomogeneous super-
conducting phase. The basic assumption is that the
interface region has an enhanced transition temperature.

*New address: Theoretische Physik, ETH-Hönggerberg, 8093 Zürich,
Switzerland.
**Permanent address: Physikalisches Institut, Universität Bonn,

Nussallee 12, 53115 Bonn, Germany.

Journal of the Physical Society of Japan

Vol. 70, No. 8, August, 2001, pp. 2409{2418

2409



We brie>y review the basic conclusions of our theory.
The 6rst and most important fact is that the super-
conducting state nucleated at the interface has a
di.erent symmetry than the bulk superconducting
phase. The interface superconducting state is time
reversal symmetry conserving. Consequently, there is a
further second order phase transition where this sym-
metry is broken. We will show that this transition occurs
in general above the onset of bulk superconductivity.
Naturally the nucleation of superconductivity at the
interface is inhomogeneous and does not lead to a
uniform phase transition. This is also true for the second
transition. Even if all interfaces between Ru-inclusions
and Sr2RuO4 are locally equivalent, their geometry and
mutual arrangement would lead to a spread on nuclea-
tion temperatures due to ‘‘capillary e.ects’’.

The 3 K superconducting state at the interface
corresponds to an odd parity state, a p-wave state with
a pair wave function that has a node parallel to the
normal vector with a positive and negative lobes parallel
to the interface (Fig. 1). This phase structure is
responsible for a peculiar change of the quasiparticle
spectrum due to Andreev re>ection, i.e. the accumula-
tion of Andreev bound states at zero-energy which may
be observed by quasiparticle tunneling. The phase
structure together with the topology of the interfaces
can generate a frustration of the order parameter phase
which can be released by introducing spontaneous
orbital currents. Note that also the second transition to
a time reversal symmetry breaking phase would reduce
the frustration and introduce spontaneous currents.

Finally the upper critical 6eld Hc2 shows special
properties in case of 6elds parallel to the interface. In
this case the orbital depairing is reduced due to the
essentially two dimensional nature of the condensate. In
addition, the anisotropy of Hc2 between 6elds parallel to
basal plane of the strongly layered Sr2RuO4 and the z-
axis direction is reduced compared with the critical 6eld
for the bulk phase. This is due to the more isotropic

nature of the Ru-metal. A considerable fraction of the
superconducting condensate of the 3 K-phase resides in
the Ru-part. An additional very striking feature occurs
for magnetic 6eld parallel to the z-axis of Sr2RuO4.
While in zero 6eld only the p-wave component with its
node perpendicular to interface appears, the magnetic
6eld drives also the other component whose node is
parallel to the interface. The energy gain occurs via the
coupling of the 6eld to the current induced by the order
parameter texture of both components. This coupling
leads to a peculiar enhancement and temperature
dependence of Hc2 in agreement with experiment.6,7)

x2. Phenomenological Description

The following analysis is based on the generalized GL
theory as the most eHcient way to describe basic
properties of an inhomogeneous superconducting state.
The bulk pairing state of Sr2RuO4 has the symmetry of a
chiral p-wave state, represented by dðkÞ ¼
�0ẑzðkx � ikyÞ. This requires a two-component order
parameter � ¼ ð�x; �y) with dðkÞ ¼ ẑzð� � k), which be-
longs to the two-dimensional representation Eu of the
tetragonal point group D4h and describes the leading
instability in Sr2RuO4. Note that recent >ux distribution
measurements in the mixed state have suggested the
presence of two order parameter components.11) On the
other hand, Ru is a conventional s-wave superconductor
with a transition temperature around 0.5 K. The super-
conductivity in Sr2RuO4 penetrates the Ru-metal due to
the proximity e.ect in two ways. First, proximity leads
naturally to a spin-triplet pairing amplitude in Ru,
although its critical temperature there may be extremely
small. Second, the spin-triplet superconducting state in
Sr2RuO4 can induce the s-wave component. The
corresponding coupling is, however, probably weaker
than for the triplet channel because at the interface the
triplet and singlet spin wave function have to be
connected, by means of spin-orbit scattering. We will
ignore the s-wave component in Ru and will brie>y
comment later only.

2.1 Ginzburg-Landau free energy
The GL free energy for the two-component order

parameter � has the well-known form,

F ¼
Z

d3r½aj�j2 þ b1j�j4 þ
b2

2
ð��2x �2y þ c.c.Þ

þ b3j�xj2j�yj2 þK1ðjDx�xj2 þ jDy�yj2Þ
þK2ðjDy�xj2 þ jDx�yj2Þ þ fK3ðDx�xÞ�ðDy�yÞ
þK4ððDy�xÞ�ðDx�yÞ þ c.c.g
þK5ðjDz�xj2 þ jDz�yj2Þ þ ðr �AÞ2=8�

ð1Þ

where the coeHcients are di.erent in the two subsystems
which we label by indices S and R for Sr2RuO4 and Ru,
respectively. The gradient terms contain the gauge
invariant spatial derivatives D ¼ rþ ið2e=	hcÞA with
A denoting the vector potential. The coeHcients Ki�

determine the coherence length of the superconducting
order parameter (� ¼ S and R). Since Sr2RuO4 has a
layered structure, the coherence length along the z-axis

Fig. 1. Interface between Sr2RuO4 and a Ru-inclusion. The interface

has a layer of thickness d of enhanced transition temperature where a

p-wave state nucleates whose wavefunction has the lobes parallel and
the nodes perpendicular to the interface.
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is short, K5S � K1S, K2S, � � � . On the other hand, Ru is
more isotropic so that K5R has a magnitude similar to
the other coeHcients. In a weak-coupling approach
assuming cylindrical or spherical Fermi surface shapes
we obtain the relation K1�=3 ¼ K2� ¼ K3� ¼ K4�. The
second order coeHcient a�ðT Þ changes sign at the bare
bulk transition temperature Tc�. For our discussion of
the qualitative properties of the interface superconduc-
tivity it is suHcient to assume linear temperature
dependence a�ðT Þ ¼ !�ðT � Tc�Þ with TcS � 1:5 K and
TcR ¼ 0.

For simplicity, we consider a single homogeneous
planar interface with a normal vector parallel to the x-
axis (n ¼ ð100Þ) where �1 < x < 0 belongs to the Ru-
metal, and 0 < x <1 to Sr2RuO4. In this geometry the
problem reduces to one dimension with the spatial
direction along the x-axis. In the following we will always
ignore the z-direction assuming homogeneity in this
direction for simplicity. On the Sr2RuO4-side a thin
layer of thickness d with enhanced transition tempera-
ture is introduced. The boundary conditions, in general,
involve re>ection and transmission of Cooper pairs at the
interface. We make the simplifying assumption of
complete transparency, which corresponds to a contin-
uous order parameter. We will, however, comment on
the more general case below. We may describe the thin
layer at the interface by a $-function in the free energy, if
d is much smaller than the coherence lengths along the x-
axis (Fig. 1). Thus, the interface part of the free energy
has the form,

F i ¼
Z

d3r$ðxÞ�j�j2 ð2Þ

where � ¼ d!�ðT � Tc�) with Tc� > TcS. This approxima-
tion is suHcient to discuss most important qualitative
features of the 3 K-phase.

2.2 Instability conditions of a planar interface
We will 6rst investigate the conditions of the nuclea-

tion of superconductivity at the planar interface. We
consider a temperature range TcS < T < Tc� where this
local onset of superconductivity is supposed to occur.
The instability condition is obtained by searching for the
solution of the linearized GL equations which are given
by

K1�@
2
x�x � a��x ¼ 0; ð3Þ

K2�@
2
x�y � a��y ¼ 0; ð4Þ

for x 6¼ 0 (� ¼ S and R for x > 0 and x < 0, respec-
tively). At x ¼ 0 the solutions have to be continuous and
satisfy the following boundary conditions,

K1S@x�xjx¼0þ �K1R@x�xjx¼0� � ��xjx¼0 ¼ 0; ð5Þ

K2S@x�yjx¼0þ �K2R@x�yjx¼0� � ��yjx¼0 ¼ 0: ð6Þ

For temperatures above TcS the order parameter is
largest at the interface and decays exponentially on both
sides. For the �x-component the solution is

�xðxÞ ¼ �x0e�x='1S for x > 0 ð7Þ

�xðxÞ ¼ �x0ex='1R for x < 0 ð8Þ
with '21� ¼ K1�=a�. The analogous solution exists for �y
with '22� ¼ K2�=a�. Then eq. (5) and (6) lead to the
instability equations,ffiffiffiffiffiffiffiffiffiffiffiffiffi

K1SaS
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1RaR

p
þ � ¼ 0 ð9Þffiffiffiffiffiffiffiffiffiffiffiffiffi

K2SaS
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2RaR

p
þ � ¼ 0; ð10Þ

for �x and �y, respectively. Because K1� > K2� > 0
('21� > '

2
2�) the nucleation will occur for the y-compo-

nent. To obtain an instability temperature T � above TcS
requires that

'2RðTcSÞaRðTcSÞ < d!�ðTc� � TcSÞ: ð11Þ

This simple relation gives a good insight on the basic
problem of the nucleation of local superconductivity at
the interface. Obviously, the larger d and the higher Tc�,
the higher is T �. However, the presence of the normal-
metal Ru tends to suppresses superconductivity, in
particular if the coherence length '2R increases. Note
that if both sides of the interface were Sr2RuO4, we
always would 6nd local superconductivity at a tempera-
ture higher than TcS. Furthermore, the suppression by
the Ru-metal is weaker, if the interface were less
transparent leading to a discontinuity of the order
parameter. Reduced transparency of the interface would
not change the dominance of the �y-component at this
interface. The reason is that the order parameter
component n � � is suppressed by a re>ecting interface.
In any case the degeneracy of �x and �y of the bulk region
is lifted at the interface, since it corresponds to a region
of e.ectively reduced symmetry.12) The dominance of
the �y component is also plausible from a microscopic
point of view. The opening of a gap for momentum
directions along the interface leads to the gain of
condensation energy for quasiparticles with momenta
parallel to the interface. These are the quasiparticles
spending the longest time in the interface region.

We assume from now on that the condition eq. (11) is
satis6ed and the resulting transition temperature is
T � � 3 K corresponding to the 3 K-phase. Note that the
transition temperature does not depend on the orienta-
tion of the normal vector as long as it lies in the basal
plane. The nucleating order parameter � is perpendi-
cular to the normal vector, i.e., n� �. The situation
does not change much if a small z-axis components of the
normal vector is introduced and the properties of the
local superconducting state is determined by its inplane
components.

Because the 3 K-phase does not break time reversal
symmetry in contrast to the bulk phase below 1.5 K, a
further second order phase transition (violating time
reversal symmetry) has to occur at a temperature T �

2

which, obviously, cannot be lower than the bulk Tc. The
presence of this additional phase transition is in contrast
to conventional inhomogeneous superconductors, where
superconductivity nucleates locally on small ‘‘islands’’
which with lowering temperature increase their overlap
and, 6nally, form a bulk superconducting phase without
further symmetry breaking (apart from the percolation
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transition). The temperature T �
2 depends on the coupling

between the order parameter components described by
the fourth order terms in the free energy. The two
pairing components may ‘‘attract’’ or ‘‘repel’’ each other,
determined by the sign of the parameter ~bb ¼ 2b1 � b2 þ
b3 (~bb > 0 repulsion and ~bb < 0 attraction). Note that the
stability condition for the chiral p-wave state requires
that �2b1 < ~bb < 2b1, where b1 > 0. The weak coupling
approach leads to ~bb > 0 (b2=b1 ¼ �b3=b1 ¼ 2=3 leads to
~bb=b1 ¼ 2=3 with b1 > 0), which suppresses the appear-
ance of the second component. Hence T �

2 may be rather
close to Tc and diHcult to distinguish experimentally
from the bulk transition.

The discussion of the second transition and the form of
the order parameter in the 3 K-phase is complex as it
involves also the vector potential due to the presence of
spontaneous currents in the time reversal symmetry-
breaking phase. Thus we turn to the numerical solution
of the complete set of GL equations including the
complete set of GL equations for the order parameter
and the vector potential. We use the parameters !S ¼
!R ¼ !� and Tc� ¼ 2:8TcS. Except for K5� we choose all
coeHcients Kj� to be the same in Ru as well as in
Sr2RuO4: K1�=!�TcS ¼ 3Ki�=!�TcS ¼ 1 ði ¼ 2; 3; 4Þ,
which corresponds to the basic zero-temperature coher-
ence length '0 � 1. The coeHcient for the z-axis gradient
is small in Sr2RuO4, K5S=!�TcS ¼ 10�2, while we take,
for simplicity, K5R ¼ K2R, since Ru is more isotropic.
The fourth order coeHcient are also chosen independent
of x, 2b1� ¼ 3b2� ¼ �3b3� ¼ 0:4!�. We choose the inter-
face layer thickness d ¼ 1, larger than it probably is in
reality, for illustrative purpose and numerical stability.
With these parameters we obtain a nucleation tempera-
ture of T � � 2TcS and T �

2 � 1:33TcS which is rather high
due to the large value of d . At this transition the �x
component becomes 6nite in addition to �y and has the
relative phase of �=2. In Fig. 2 we show the shape of
the two order parameter components in the three
di.erent temperature regimes. Here (a) represents the
genuine 3 K-phase with vanishing �x-component (time
reversal symmetry conserving phase), (b) is the inter-
mediate time reversal symmetry breaking state with
both components 6nite. Finally, (c) is the bulk super-
conducting phase of Sr2RuO4. Note that both cases (b)
and (c) possess a complex order parameter texture at the
interface which will be important for the magnetic
properties discussed in the next section.

2.3 Capillary e*ect
The interface instability for the superconducting state

bears some resemblance with the wetting of a surface.13)

Similar to the wetting phenomena of liquids we 6nd here
capillary e.ects. Modulations of interfaces on length
scales comparable to the coherence length can enhance
the nucleation temperature. While this capillary e.ect is
rather simple for conventional superconductors, there
are complications in the case of an unconventional
superconductor. In particular, there can be frustration
e.ects due to the internal structure of the pair wave
function, as we will see in the next section. Here we
would like to consider 6rst the rather simple situation of

an interface that is not >at but has a weak modulation.
The enhancement of the transition temperature on a

spatially modulated interface can be most simply
interpreted by the e.ective increase of the surface area.
This corresponds also to an enhanced mutual overlap of
the order parameters nucleating at di.erent points of the
interface or on di.erent inclusions. Let us assume that
the interface is only slightly modulated, described by
x0ðyÞ ¼ l sinð2y=L0Þ where d� l� L0 � 'i�. Then, by
the most simple variational approximation we replace
the interface term by

F i ¼
Z

d3rj�j2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2l

L0 cos
2y

L0

� �� �2
s

$ðx� x0ðyÞÞ:

ð12Þ

The important modi6cation appears via the new inter-
face metric, which accounts for the fact that the interface
is wider or ‘‘denser’’. This leads to an enhanced
instability temperature, even if we approximate the
spatial dependence of the order parameter by a form like
in eq. (7, 8). Using this variational approach the
instability equation for �y changes toffiffiffiffiffiffiffiffiffiffiffiffi

K2saS
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2RaR

p
þ �R ¼ 0; ð13Þ

where the factor R is

R ¼ 1

L0

Z L0

0

dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2l

L0 cos
2y

L0

� �� �2
s

� 1þ l

L0

� �2

:

ð14Þ

Obviously, R is always larger than 1 and leads to an
e.ective enhancement of �. We have ignored in our
variational approach the spatial dependence of the order
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Fig. 2. Spatial dependence for the two order parameter components

(j�xj: dashed line and j�yj solid line): (a) 3 K-phase at
T ¼ 1:75TcS > T

�
2 ; (b) intermediate time reversal symmetry break-

ing phase at T ¼ 1:25TcS < T
�
2 with both components which have a

relative phase �=2 (! two-fold degeneracy); (c) bulk super-

conducting phase d ¼ ẑzðkx � ikyÞ and a texture at the interface at
T ¼ 0:95TcS.
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parameter along the interface. Including this aspect lead
to even further enhancement of the nucleation tempera-
ture.

Another aspect of the capillary e.ect is the mutual
in>uence of interfaces which we would like to consider on
the example of two parallel interfaces. To be speci6c we
assume a thin Ru-metal slab of thickness L sandwiched
between Sr2RuO4, again with normal vector parallel to
the x-axis. Both interfaces have the same properties.
Then it is easy to derive the instability equations taking
the boundary conditions into account. There are two
combinations of the nucleating order parameters on the
two interfaces: a ‘‘bonding’’ and ‘‘antibonding’’ con6g-
uration which is even or odd, respectively, under
re>ection at the center of the slab. For the instability
equations of the �y-component we obtain,ffiffiffiffiffiffiffiffiffiffiffiffi

K2saS
p

þ tanh
L

2'2R

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2RaR

p
þ � ¼ 0 ð15Þ

for the bonding andffiffiffiffiffiffiffiffiffiffiffiffi
K2saS

p
þ coth

L

2'2R

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2RaR

p
þ � ¼ 0 ð16Þ

for the antibonding combination. Obviously, we recover
in both cases the original instability equation eq. (10), if
we separate the two interfaces far apart, L� '2R. If,
however, L � '2R then the second (positive) term is
diminished (enhanced) and a higher (lower) transition
temperature T � results in the case of bonding (antibond-
ing). Naturally, the same kind of capillary e.ect occurs
also in the inverse situation where a Sr2RuO4 slab is
surrounded by Ru. The bonding combination of the two
interface states just corresponds to the adjustment of the
phases of two superconducting islands. The antibonding
combination is equivalent to a phase di.erence of  and
is the energetically least favorable case. We will see in
the next section that this aspect is important for
frustration e.ects of the 3 K phase.

We can conclude that the onset of the 3 K phase is
rather inhomogeneous on the interfaces as well, because
the capillary e.ects have a strong in>uence on the
nucleation of the superconducting order parameter.

x3. Physical Consequences

3.1 Spontaneous interface magnetism
While the onset of superconductivity is visible in the

reduction of electrical resistance, the signi6cant features
of second transition at T �

2 are less easy to detect. Bulk
superconducting double transitions are often observed
through speci6c heat anomalies. Here the only signi6cant
anomaly, however, is seen at the onset of bulk super-
conductivity at Tc ¼ 1:5 K. Magnetic properties may, on
the other hand, allow us to observe the onset of the
superconducting phase at T �

2 that violates time reversal
symmetry. The solution of the full GL equations show
that the below T �

2 spontaneous supercurrents occur
parallel to the interface. In Fig. 3 we show the magnetic
6eld and current distribution at the interface for the case
corresponding to Fig. 2(b). There are two current
densities along the interface >owing in opposite direction
as a result of the texture of the two order parameter

components at the interface. Screening currents are weak
due to absence of superconductivity in the bulk. Thus,
the 6eld resulting from the currents is strongly peaked on
the interface and can even generate an overall 6nite
magnetic >ux. Since the >ux is 6nite, it could be
observed, in principle, by high-resolution magnetic
microscopes, such as scanning Hall probes or a SQUID
microscopes. Another sensitive probe for local magnetic
6eld distributions is zero-6eld muon spin relaxation,
which is expected to show an increase of the depolariza-
tion rate below T �

2 . However, if T �
2 is very close to Tc (as

is very likely the case) then the signal will be obscured by
the bulk superconducting state which has previously
been observed by �SR.5) The muon spin relaxation
experiment would in any case give a distinction between
magnetic properties of the 3 K-phase at T � and the bulk
phase.

3.2 Frustration e*ects in the inhomogeneous state
We have seen in the previous section on the capillary

e.ect that the lowest energy con6guration of order
parameters nucleated on di.erent interfaces naturally
corresponds to equal order parameter phases. Let us now
see how the superconducting state would arrange on
several inclusions close enough to each other that their
order parameters substantially overlap. If the order
parameter were conventional, it would be easy to adjust
all the order parameter phases on the di.erent inclusion
to be equal. This is not the case, if the order parameter
has p-wave symmetry as is illustrated in Fig. 4. The
three Ru-inclusions depicted in Fig. 4 carry a super-
conducting state which on every point of the interface
correspond to a p-wave state with the momentum
direction aligned with the interface, i.e. the gap node
lies always parallel to the normal vector. The interface
regions on di.erent inclusions close to each other behave
like junctions or weak links connecting a network of the
superconducting islands.

The direction of the positive lobe of the pair wave
function is indicated by the arrows in Fig. 4 where we
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Fig. 3. Spontaneous magnetic 6eld Bz (solid line) and supercurrent jy
(dashed line) distribution for the state given in Fig. 2(b) at
T ¼ 1:25TcS.
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assume that the order parameter phase is constant on
each inclusion. Parallel (antiparallel) arrows on neigh-
boring interfaces correspond to bonding (antibonding)
con6gurations of the overlapping order parameters, or
equal phase (-shifted phases). It is obvious that in the
arrangement of the order parameter on each inclusion
introduces a -phase shift between its weak links.
Although we may change the phases on each island, it
is impossible to adjust them so that all links have a zero
phase di.erence for loops consisting of an odd number of
inclusions (Fig. 4 shows this for the case of three
inclusions). The situation is in many respects similar to
the case described for granular d-wave superconduc-
tors.28,29,31) We may identify loops which contain 
phase shifts and are consequently frustrated, since they
cannot adjust the order parameter phase to minimize the
energy of all weak links simultaneously. The frustration
can be released by introducing phase gradients (super-
currents) which are energetically favorable, if the weak
links grow strong enough. This would yield orbital
magnetic moments. This e.ect results from the competi-
tion between weak link energy (determined by order
parameter overlap) and magnetic 6eld energy (deter-
mined by geometry) as in usual frustrated -loops.
However, the frustration also is reduced with the time
reversal symmetry breaking transition at T ¼ T �

2 . Both
ways have similar impact by diminishing frustration and
lead to spontaneous currents. In the network of super-
conducting islands the transition to the time reversal
symmetry breaking state is inhomogeneous.

The frustrated 3 K-phase with spontaneous currents
can exhibit enhanced absorption in the ac-susceptibility.
Dissipative processes, such as phase slips, are associated
with the hysteretic reversal of the spontaneous currents.

Thus the absorption would be sensitive to the applica-
tion of a small static external 6elds which would bias the
spontaneous currents (a similar situation was observed
in granular high-temperature superconductors28,29,31))
The presence of spontaneous orbital magnetic moments
in the inhomogeneous time reversal symmetry violating
phase above TcS can cause a characteristic non-linear
magnetic response in small external 6elds, similar to the
paramagnetic Meissner e.ect or Wohlleben e.ect in
high-temperature superconductors.28,29,31) Under 6eld-
cooling conditions the magnetic moments would be
generated in a polarized way yielding a paramagnetic
contribution. Probably, the signal would be considerably
weaker than in high-temperature superconductors. The
inhomogeneous 3 K-phase is, however, more suitable to
measure the spontaneous magnetism than the bulk
superconducting phase, where the macroscopically visi-
ble magnetism is only resulting from sample surface
currents, while it is screened or compensated in the
interior of the systems.

3.3 Quasiparticle spectrum
The presence of superconductivity modi6es the

quasiparticle spectrum in small enclosed normal-metal
regions through the formation of so-called Andreev
bound states. Andreev bound states are standing waves
of an electron-hole superposition, e.g. in a normal metal
region enclosed by a superconductor. In a quasiclassical
picture the standing wave corresponds to an electron and
hole travel on the same classical (ballistic) trajectory,
but in opposite direction and are subject to Andreev
re>ection upon impact in the superconductor at both
ends of the trajectory. The energy of such a standing
wave depends on the phase of the gap functions at the
boundaries of the classical trajectories and can be
estimated by Bohr-Sommerfeld quantization. Energies
much smaller than the gap of the superconductor are
approximately given by,

Eðn; -Þ �
vF

2L
½ð2nþ 1Þþ -� ð17Þ

where vF is the Fermi velocity, L the length of the
trajectory, n an integer and, most important, - is the
di.erence between the phases of the gap functions at
both ends of the ballistic trajectory (for simplicity we
ignore here the e.ect of impurity scattering which can
also be the origin low-energy states). For unconventional
superconductors the phase di.erence - depends also on
the direction of the electron (hole) momentum, because
the gap function, in general, has an anisotropic phase
structure, i.e. a di.erent phase for di.erent directions of
momenta on the Fermi surface. Thus, even in case of a
homogeneous order parameter, the phase - appearing in
the Andreev scattering process would be non-trivial, but
revealing the internal phase structure of the pairing
state. For real order parameters we 6nd - ¼ � which is
most important, because it leads to a zero-energy state
independent of vF and L. This phase di.erence appears,
if the gap function has positive and negative sign
depending on the momentum direction on the Fermi
surface. From the quasiclassical point of view underlying

Fig. 4. Con6guration of the p-wave pair wave function on Ru-

inclusions (shadowed regions) in a cross section parallel to the x{y-
plane. The arrow indicates the direction of positive wave function

(see box). The dashed circles show the regions forming weak links

between inclusions. The fact that the arrows of di.erent inclusions in

the weak link region are antiparallel corresponds to a phase
di.erence of . In the given con6guration there is no way to adjust

the phases of all three inclusions so that all weak links have minimal

energy, i.e. a vanishing phase di.erence. Therefore this system is

frustrated.
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eq. (17) the geometry of the classical trajectory decides
about the phase - ¼ 0 or . Since a large fraction of
trajectories can have - ¼  and all of them yield a zero-
energy state, the zero-energy states (- ¼ ) lead to an
enhanced density of quasiparticle states at the Fermi
surface. The presence of this kind of zero-energy bound
state has been intensively investigated for surfaces of d-
wave supercondcutors.14,15)

In our case a p-wave pairing state nucleated at the
interface generates a gap function which has regions of
di.erent sign on the Fermi surface. Zero-energy Andreev
bound states are likely to occur within the Ru-inclusions
as well as in Sr2RuO4 between Ru-inclusions that are
suHciently close to each other. We encounter here a
complex form of an (imperfect) Andreev billiard. The
Andreev re>ections are not perfect. Due the 6nite width
of the superconducting regions, the zero-energy level
acquires some width. Nevertheless, there is a strongly
enhanced density of states at zero energy. Once time
reversal symmetry is broken the phase di.erences - for
trajectories deviate from 0 and . The originally
enhanced density of states at zero-energy spreads over
a larger energy region. (Note that the reduction of the
density of states at the Fermi energy represents also a
driving force for the time reversal symmetry breaking
transition, as was suggested also for the surface states of
a d-wave superconductor.16,17))

One experimental indication for the enhanced density
of states zero-energy states is the observation of so-called
zero-bias anomaly, i.e. an increased quasiparticle tunnel-
ing conductance at zero voltage. Recent measurements
of quasiparticle tunneling conductance in c-axis facing
break junctions of Sr2RuO4 with Ru-inclusions report
the observation of zero-bias anomalies.18) In the 3 K-
phase a zero-bias anomaly in current-voltage character-
istics develops gradually with decreasing temperature.
This conductance peak deforms into a pronounced bell
shape combined with a residual zero-bias anomaly, below
the bulk superconducting transition. Assuming that
these tunneling features re>ect the quasiparticle density
of states connected with the Andreev billiard, we can
interpret them within the scenario of the nucleated p-
wave state which turns into a time reversal symmetry
breaking state at lower temperature. We would like to
emphasize the fact that break junctions in samples
without Ru-inclusions did not show any similar features
above and below the onset of bulk superconductivity at
1.5 K. Note also that an analogous phenomenon, the
deformation of the zero-bias anomaly, has been observed
for tunneling conductance into the [110]-surface of
YBa2Cu3O7.

19) Also in that case broken time reversal
symmetry is most likely cause.16,17)

While extensive point-contact spectroscopy has al-
ready been performed observing surface states of
Sr2RuO4,

20) it is also desirable to have more experi-
mental investigation of the quasiparticle spectrum in and
around the Ru-inclusions via tunneling and related
probes.21{23) In particular, using a contact to a single
inclusion and measuring the quasiparticle current-
voltage characteristics through the Ru-metal inclusion
into Sr2RuO4 could provide further valuable information

on the 3 K as well as bulk superconducting phase. A
detailed analysis of the phenomena discussed in this
section will be given elsewhere.

x4. Upper Critical Field

The 3 K phase has an upper critical 6eld which
exceeds the bulk critical 6eld considerably and shows a
weaker anisotropy of in-plane versus out-of-plane critical
6eld. The fact that superconductivity is con6ned in a
small layer at the interface naturally leads to an
reduction of orbital depairing, if the external magnetic
6eld is applied parallel to the interface. This type of
e.ect is known for superconductivity at other planar
defects such as twin boundaries.24,25) In a magnetic 6eld
superconductivity nucleates 6rst at interfaces which are
parallel to the 6eld. We will analyze this e.ect for the
[100]-interface with magnetic 6elds B ? x-axis. Unfor-
tunately, a complete analytical treatment of this
problem is not possible even for the GL formulation.
Therefore we will restrict our analytic discussion to the
region of very small 6elds at the onset of the 3 K-phase
and use a variational approach. This allows us to
illustrate a few basic features of the upper critical 6eld.
Then we will consider the behavior of Hc2 by numerical
means for the model introduced above.

For temperatures close to T � the critical 6eld is small
and we may consider it as a perturbation.25) Thus, we
will use the exponential form of the order parameter
appearing in zero-6eld at the onset of the 3 K-phase:
�x� ¼ �x0 expð�jxj='1�Þ and �y� ¼ �y0 expð�jxj='2�Þ with
'i� ¼ Ki�=a�. The magnetic 6eld lies in the plane of the
interface B ¼ Hð0; sin /; cos /Þ with the vector potential
A ¼ Hðx� x0Þð0;� cos /; sin /Þ. While in zero-6eld only
the �y-component is nucleated at T �, in general both
components can appear in a 6nite magnetic 6eld. We use
now the given form of the order parameter and calculate
the free energy in a 6nite 6eld by integrating over the
spatial coordinates. In this 6rst-order perturbative form
the free energy per unit area of the interface is then up to
second order in the the order parameter,

F var ¼
X
�¼S;R

�
j�x0j2 a�'1� þ

�

2
þ 	

2H2

4
'31�fx�ð/Þ

	 


þ j�y0j2 a�'2� þ
�

2
þ 	

2H2

4
'32�fy�ð/Þ

	 


þ ið��x0�y0 � �x0��y0Þr	HK2�'
3
2� cos /

�
ð18Þ

with 	 ¼ 2e=	hc and r ¼ ð
ffiffiffi
3

p
� 1Þ=ð

ffiffiffi
3

p
þ 1Þ2 where we

used the relation '1� ¼
ffiffiffi
3

p
'2�, keeping the weak-coupling

relations among di.erent Ki� for cylindrical symmetry.
To simplify the free energy (18) we have 6xed x0 to zero,
since it plays a minor role for our discussion. The
anisotropy parameters are

fx�ð/Þ ¼ K2� cos
2 /þK5� sin

2 /;

fy�ð/Þ ¼ K1� cos
2 /þK5� sin

2 /:
ð19Þ

First we consider the case of the in-plane 6eld
(/ ¼ =2). Here only the �y-component appears, which
corresponds to the polar state with its nodes perpendi-
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cular to the 6eld, which also appears in the bulk
superconducting phase for in-plane 6elds. The zero of
the corresponding coeHcient in F v de6nes the instabil-
ity, which leads to

Hc2 ¼
%0


�d

2a�yðT Þ
K5R'

3
2R

" #1
2

ð20Þ

where we used that K5S � Ki�;K5R (i 6¼ 5). In this case
including a 6nite value of x0 we 6nd that x0 ¼ �'2R=2
maximizes Hc2 (we omit here an explicit demonstration).
Note that we can write

P
�ð'2�a�ðT Þ þ �ðT Þ=2Þ ¼ a�yðT Þ

which is proportional to ðT � T �Þ close to T �. Conse-
quently, we observe a square-root dependence
Hc2 / jT � � T j

1
2 .24,25) For curved interfaces the regions

tangential to the 6eld tend to allow the nucleation at
higher temperature. Simultaneously, we have, however,
to include capillary e.ects. Thus, the observation of a
pure square-root temperature dependence would be
masked in reality.

For the 6eld parallel to the z-axis (/ ¼ 0) the �x-
component is involved too, despite the lower critical
temperature in zero 6eld. The optimal value of x0 is very
close to zero so that we 6x x0 ¼ 0. With this simpli6ca-
tion the instability equations involving the coupling of
both components have the form,

a�xðT Þ þ
	H

2

� �2

&x

( )
�x0 � i	H&0�y0 ¼ 0

i	H&0�x0 þ a�yðT Þ þ
	H

2

� �2

&y

( )
�y0 ¼ 0

ð21Þ

where &x ¼
P

� K2�'
3
1�, &y ¼

P
� K1�'

3
2� and &0 ¼

r
P

� K2�'2�. Moreover, a�xðT Þ ¼
P
�ð'1�a�ðT Þ þ �ðT Þ=

2Þ is the e.ective second order coeHcient for the �x-
component and changes sign at a temperature Tcx which

lies between T �
2 and T �. The critical 6eld is obtained by

searching the non-trivial solution of this equation
system,

Hc2ðT Þ �
%0


�
a�yðT Þ
&y

a�xðT Þ
a�xðT Þ � 4&02=&y

" #1
2

ð22Þ

where we used ja�yðT Þj � a�xðT Þ for T ! T �. Thus we 6nd
again a basic square root behavior of Hc2ðT Þ as in the
case of inplane 6elds. However, in addition we see that
the coupling of the two components yields an enhance-
ment factor to Hc2 which becomes stronger as the
temperature is lowered. (Note, however, that the present
form is only valid for 0 < a�xðT Þ � 4&02=&y and in any
case our variational approach is applicable only in a
restricted region close to T �.) This enhancement is
important, since it modi6es qualitatively the overall
form of the temperature dependence of Hc2. In parti-
cular, it can lead to an upwards curvature following the
initial square root behavior. Before considering this
point numerically let us, however, address the issue of
Hc2 anisotropy.

For the bulk superconducting phase of Sr2RuO4 the
critical 6elds are given by

H?
c2 ¼

�%0aSðT Þ
4K2S

and H
k
c2 ¼

�%0aSðT Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2SK5S

p ð23Þ

with T < TcS and ignoring anisotropy of Hc2 for di.erent
inplane orientations, which is small.27) This leads to an
anisotropy factor of order H

k
c2=H

?
c2 � 2

ffiffiffiffiffiffiffiffi
K2S

p
=
ffiffiffiffiffiffiffiffi
K5S

p

whose experimental value is about 12 for T close to TcS
in experiments (K2S � K5S � 0:03K2S).

6) On the other
hand, the anisotropy for the 3 K-phase may be less
anisotropic with a factor 4{5,6,7) since

H
k
c2

H?
c2

�
2ð'32SK1S þ '32RK1RÞ

'32RK5R

 !1
2

ð24Þ

gives a smaller ratio due to the fact that Ru-metal is
basically isotropic with K5R � K2� and also the coher-
ence lengths at T ¼ T � are of the same order in Ru and
Sr2RuO4. The reduction of anisotropy originates from
the isotropy of the Ru-metal which leads to a stronger
coupling of the order parameter to the inplane 6eld than
for Sr2RuO4.

The numerical evaluation of the upper critical 6eld for
the model used in §2.2 illustrates the temperature
dependence on qualitative level. The result are shown
in Fig. 4 for the assumption that K5S ¼ 0:03K2S and
K5R ¼ K2S. The circles and diamonds are the numerical
results for the critical 6eld inplane and along thez-axis,
respectively. We observe indeed a weaker anisotropy for
the critical 6eld of the 3 K-phase than for the bulk phase
also indicate in Fig. 4. The initial temperature depen-
dence has square root dependence as obtained analyti-
cally. While the inplane critical 6eld has a downward
curvature in the plotted temperature range, the z-axis
6eld is nearly linear. The analytical expression in eq. (20)
indicates that even the upward curvature would be
possible for the z-axis critical 6eld. The observation of
such an upturn would be a strong support for our

0.5 1.0 1.5 2.0
T/Tc

0.0

1.0

2.0

3.0

4.0

H
c2

 [
T

]

Fig. 5. Upper critical 6elds for the 3 K and bulk phase: The
numerical solution of the GL equations give the upper critical 6elds

of the 3 K-phase: inplane (circles) and z-axis (diamonds). The

corresponding bulk critical 6elds are given by doted lines. Note, the
weaker anisotropy of the critical 6eld of the 3 K-phase. The

numerical data compare well with the experimental data on a

qualitative as well as quantitative level.6,7)
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scenario. Our result reproduces the experimental data
(available at present) qualitatively and to some extent
quantitatively, with the choice of parameters giving
T � � 2Tc and the proper anisotropy of the bulk critical
6elds.6,7) The peculiar temperature dependence of the z-
axis critical 6eld of the 3 K-phase is also similar to that
found in experiment.6,7)

x5. The s-Wave Order Parameter

Ru metal is a conventional superconductor with a
transition temperature of about 0.5 K. Thus, we may
include an s-wave order parameter into our theory. The
coupling between the spin-singlet order parameter �s and
the spin-triplet order parameter � requires that we take
spin-orbit coupling into account. The di.erence between
spin-orbit coupling in Ru and Sr2RuO4 yields spin >ip
tunneling at the interface which introduces a coupling
between �s and �.26,27) The coupling term has the form

F s.o. ¼ t
Z
interface

dS½��sðn� �þ c.c.Þ� ð25Þ

where �s is the s-wave order parameter on the Ru-side
and � the two-component p-wave order parameter on
Sr2RuO4-side, n is the interface normal vector and t is a
coupling constant. Obviously, for n ¼ ð100Þ only the �y-
component couples.

Further there is a coupling between the two order
parameters also away from the interface which is again
due to spin-orbit coupling. The corresponding term in
the free energy, derived based on symmetry arguments,
has the form,

F sp ¼
Z

dV ~aa½ðDx�y �Dy�xÞ��s þ c.c.� ð26Þ

where ~aa is again a coupling constant di.erent on the two
sides. This term is only active, if there is a spatial
variation of the order parameter or a magnetic 6eld is
present. We 6nd that the spatial variation of the order
parameter along the x-axis would couple exclusively the
�y-component to �s.

This structure of order parameter coupling leads to a
support for the nucleation of the �y-component on the
discussed [100]-interface due to the mixing with the s-
wave order parameter intrinsic to Ru. On a qualitative
level, however, the inclusion of an s-wave component
would not modify the properties of the 3 K-phase on an
essential way.

x6. Conclusion

In this article we have interpreted the 3 K-phase of
Sr2RuO4 with Ru-metal inclusions as an inhomogeneous
superconducting state located at the interface between
the two materials. This leads to a superconducting phase
di.erent qualitatively from the bulk phase appearing
below 1.5 K. The 3 K-phase conserves time reversal
symmetry. This implies an additional phase transition
where time reversal symmetry is spontaneously broken.
This second transition occurs above the onset of bulk
superconductivity. Irregular shapes and distribution of
the Ru inclusions and the capillary e.ects would prevent
a very sharp transition for the onset of the 3 K-phase as

well as for the second transition.
The origin of multiple superconducting transitions is

analogous to that of the splitting of the superconducting
phase transition of degenerate order parameters by
applying symmetry-lowering uniaxial stress.30,12) Indeed
the interface represents a region of the system where the
symmetry is e.ectively lower, lifting the degeneracy
between the two order parameters �x and �y. Therefore
the experimental proof of the conservation of time
reversal symmetry in the 3 K-phase would be a clear
con6rmation of a having a two-component order para-
meter.

We have argued that the phase structure of the pair
wave function can lead to frustration e.ects in the
coupling of the superconducting order parameters on
di.erent Ru-inclusions or di.erent regions on the same
inclusion. This is closely related with the fact that this
type of order parameter can lead to low- or zero-energy
Andreev bound states, since the con6guration of inclu-
sions forms a complex Andreev billiard system. There
are various experimental consequences due to these
properties, some of which have been partially already
investigated experimentally. (1) The Ru-metal inclu-
sions provide an interesting way to tunnel into Sr2RuO4.
Contacts via Ru inclusions could reveal more about the
structure of the quasiparticle spectrum.18) (2) The
superconducting interface states of di.erent neighboring
Ru-inclusions overlap and form a complex network. The
study of the critical current as a function of temperature
may give another tool to investigate the unconventional
nature of this state. In particular, the frustration e.ects
mentioned above and the spontaneous currents which
occur in the time reversal symmetry breaking phase can
yield characteristic anomalous behavior. (3) The low-
6eld magnetic response may show strong non-linear
behavior and cooling-history dependence in the time
reversal symmetry breaking state for temperatures
above TcS, a phenomena which could be rather similar
to the paramagnetic Meissner (or Wohlleben) e.ect in
granular high-temperature superconductors.28,29,31) (4)
The study of microwave absorption in a small static
magnetic 6eld may show a non-monotonic 6eld depen-
dence as in some granular high-temperature super-
conductors.28,29,31)

Finally, the upper critical 6eld provides an important
way to probe the nature of the 3 K phase. As shown in
section 4, the temperature dependence of Hc2 is
characterized by a square root behavior close to the
onset T � (Hc2ðT Þ / jT � T �j1=2). For 6elds parallel to the
z-axis of Sr2RuO4 a tendency to change the sign of
curvature (downwards to upwards) is suggested, which,
if con6rmed experimentally, would provide additional
strong evidence for the two-component order parameter
picture of the unconventional superconducting phase of
Sr2RuO4.

These is only a selection of possible unusual properties
of the 3 K-phase. It is obvious that this phase and its
properties provide a very good tool to investigate the
superconductivity in Sr2RuO4 from a new point of view.
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